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Introduction:  The Analytic Hierarchy Process 
The Analytic Hierarchy Process (AHP), developed by Thomas Saaty [1] in the 1970s, provides a 
general framework for organizing and prioritising the various elements of any type of decision.  It 
has been used prolifically in contexts such as recruitment, oil exploration, strategic planning, risk 
management and project selection, among many others.  It is best applied to complex decisions 
with multiple-criteria and sub-criteria, whence the hierarchical character of the method.  It provides 
many benefits to the decision-making team, including a focal point for deliberations, a framework 
for applying and testing corporate values and preferences and an umbrella under which other 
decision-support systems can feed their results seamlessly.  It also provides a means for 
collaborative and distributive decision-making, yielding efficiency and quality gains simultaneously.  
 
The process begins with the establishment of the criteria tree, and the identification of a set of 
viable decision options. Next relative preference rating assessments are made for each option, 
(known collectively as a preference vector), in relation to each of the lowest level sub-criteria in the 
hierarchy.   For example, if there are four options, and each is rated equally against a criterion, this 
would appear as [25%, 25%, 25%, 25%].  A preference vector relating to a different criterion might 
appear as [40%, 10%, 30%, 20%], showing the first to be the most preferable.  Note that the vector 
is normalised here to sum to 100%.   These assessments can be arrived at by a variety of means, 
including subjective evaluation, pair-wise comparison techniques, voting process or transformation 
from external analyses. 
 
The method also requires the relative evaluations of the criteria against each other at each level.  
Preference vectors for the decision options against higher level criteria are then calculated as a 
weighted average of the preference vectors corresponding to the level below, the weights being 
provided by the relative sub-criteria preferences at that lower level.  This process is continued up 
the hierarchy until a vector if found for the decision itself at the top of the tree.  In ordinary usage, 
the top rating system in this vector is regarded as providing the best overall choice, subject to the 
criteria considered and the weightings supplied.   
 
A sample hierarchy is shown in figure 1 below.  Here a decision to invest in either property or equity 
is considered against three high-level criteria: Return, Social Responsibility and Security.  The first 
two are decomposed into sub-criteria as shown.  Table 1 shows the assessed or calculated vectors 
representing the relative appeal of the decision options against the lowest level sub-criteria and 
also the relative importance of these criteria against each other.    The calculated vectors are 
shown in table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Decision Structure 
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Table 1:  Input Data 
 

 
 

 
 
 

 
 

Table 2:  Calculated Results 

The vectors in the final column of table 2 show the calculated relative desirability of the two options 
at the remaining  nodes of the tree, the last representing the top node and therefore the result of 
the entire decision itself.  We see here that ‘Property’ scores higher than ‘Equity’ as is therefore the 
preferred option. 

Constrained Strategic Value Maximisation  
When the AHP is applied to the problem of project selection at a strategic level, it can yield a 
subset of candidate projects rather than a single choice only, as was the case in the example 
above.  The selection of the candidates is governed by maximising the sum of their preference 
ratings (their strategic value), while constraining their aggregate consumption of some common 
resource, usually cost, to remain within some prescribed constraint.    The treatment of cost as a 
global resource common to all projects (rather than as one of the criteria in each decision), allows 
for an integrated selection process to occur. 
 
In what follows, we will describe how the project selection process can be formulated.  The 
approach will echo that found in [2] and similar texts, which recognises the need to make tentative 
decisions based upon uncertain information, and to use the corresponding results as a guide for 
further refinement.     
 
We shall begin by providing broad cost estimates of each project, and identify the subset of most 
attractive projects (in terms of their combined strategic value) that meet the cost constraints.  These 
will be considered as best candidates for further cost refinement, which when performed will 
provide new cost data, and in turn used to identify possibly a different selection subset. In this way, 
each successive solution informs the next with increasing certainty, all the while limiting costing 
details to levels commensurate with the degree of confidence currently held for their ultimate 
selection.   This continues until the selection subset converges to one immune to further cost 

No. Issue In relation to….. Normalised 
 Decision Options   
1 Property vs Equity Short tem  [15%, 85%] 
2 Property vs Equity Franked Dividends [0%, 100%] 
3 Property vs Equity Security [75%, 25%] 
4 Property vs Equity Rural Focus [25%, 75%] 
5 Property vs Equity Environmental Focus [10%, 90%] 
 Lowest Level Criteria   
6 Short Term vs Franked Divs. Return on Investment [67%, 33%] 
7 Rural vs Environmental Social Responsibility [50%, 50%] 
 Higher Level Criteria   
8 Return vs Social vs Security Decision Objective [40%, 40%, 20%] 

No. Decision Result In relation to….. Normalised 
    
1 Property vs Equity Return [10%, 90%] 
6 Property vs Equity Social [17.5%, 82.5% 
7 Property vs Equity Best Investment [37.5%, 62.5%] 



 

 

changes, or all uncertainties have been removed.   Extensions of this model to accommodate the 
effects of risk will be provided. 
 

An Integer Programming (IP) Formulation 
Consider the case where N strategic directions are being considered, each represented by a 
project or program with a corresponding current approximate cost of Cj, j = 1…N.      
 
The problem is then to find the set of selection variables Xj , each taking on a value of one or zero 
(where one implies the selection of project j and zero implies its rejection), which maximises the 
strategic value  
 
V = Σ XjVj 

 
where Vj is the preference value for option j, j = 1…N in the top-level preference vector in the AHP 
formulation,  
 
subject to the global resource constraint 
 
 Σ XjCj <= C 
 
where C is a prescribed aggregate cost constraint. 
 
V will therefore be some value less than or equal to 100%, representing the percentage of total 
value that can be attained within the budget. 
 
It is possible to add further constraints to the model to reflect interdependencies between the 
options.  For example: 
 

1. Xb = 1   Option b must be selected 
 

2. Xb = 0   Option b must not be selected 
 

3. Xb + Xc = 1 One and only one of either option b or c must be selected.   
 

4. Xb + Xc <= 1  Options b and c should not be selected together.   
 

5. Xb <= Xc   Option b implies the selection of option c 
 

6. Xb = Xc  Either both or neither of options b and c must be selected 
 
This problem can be modelled by means of a zero-one integer programming formulation and is 
easily implemented within in Microsoft Excel™ by means of the ‘Solver’ add-in. 
 

Monte Carlo and Iterative Selection 
While the IP formulation delivers a selected subset, the sensitivity of its constitution to uncertainties 
in the cost estimate is unknown.   This suggests: 
 
1, The need for a Monte Carlo simulation which samples a large number of random costs 
distributed around the current estimate and solves the IP problem for each.  When the results are 
aggregated, this provides an indication of the probability of project j being selected. 
 

2. An iterative approach which uses these selection probabilities as an indicator of the projects for 
which refinement of cost estimates would be best served for a new solution at the next step.   



 

 

Specifically, for the Monte Carlo process we select a random value from the likely distribution of 
variations in cost estimates around Cj, j = 1 …N.  Let Cji be the random value in Monte Carlo run i (i 
= 1 to M). At each run, we solve the IP problem with these Cji, producing selection variables Xji again 
taking on values of zero or one. 

For any run i, the total cost across all projects is Σ XjiCji, j = 1 to N and the total strategic value 
produced is Σ XjiVj 

What we require is a summary or representative value for the selection variables across the M 
samples at Monte Carlo run number i.   This can be obtained as follows: 

For any project j, the average cost across all runs will be 

C’j = [Σ XjiCji]/M, i = 1 to M 

If project j were to be selected in every run, all Xji s for it would be equal to one and the average 
cost across all samples of the run would be 

 

C’j = ΣCji/M, i = 1 to M 

 

But, since Cji s are unbiased estimates of Cj we would expect that 

 

Cj = ΣCji/M 

 

so that if project j were selected in every run, we would expect 

 

C’j = Cj 

 

It follows that the ratio 

 

Yj = C’j/Cj  

 

provides a measure of the frequency with which project j is selected (a  “selectability” index for 
project j.  Therefore Yj is a non integral (‘fuzzy’) approximation of Xj, which will approach either zero 
or one as the uncertainty in the cost estimate decreases.  It can be interpreted as the current 
probability of project j being ultimately selected  

Projects with Yj  values relatively close to one (say greater than 0.5) therefore appear to have 
greater appeal in terms of their cost/benefit value than the others and therefore, at run i, make 
claim for higher priority in terms of cost estimate refinement.   This might result in a new value for Cj 
and with a smaller associated uncertainty interval.   

This introduces then need for an iterative approach since these values can be fed into a new Monte 
Carlo simulation (again with M runs) which in turn will produce a new set of Yj s. Depending upon 
the sensitivity of the system, this might yield a newly constituted subset of likely selection 
candidates.   The analyst can also intervene manually by forcing certain selections or exclusions 
(setting the corresponding selection variable to one or zero as required).   The process is then 
repeated until there is sufficient confidence that the selection subset has stabilised.  It is shown in 
the diagram below.  
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Figure 2 
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Sample Calculations 
A problem with ten projects was run.  The initial costs, AHP decision result and uncertainty intervals 
for the first step are shown in the first row of table 3.  As costs for the currently selected projects are 
refined so the overall uncertainty in the system reduces.  The sequence of selection subsets is 
shown in table 4 below.   Underlined values indicate a change from the previous step.  
 
 
Run Project Initiative 

No
1 2 3 4 5 6 7 8 9 10 

 Strategic Value 13.   

1 Uncertainty radius 30 40 25 30 15 25 20 40 30 20
 Cost Estimate 2.9 7.5 1.7 6.5 2.8 6 2 5.9 5.8 8.4

     

2 Uncertainty radius 10 40 10 10 15 25 20 40 30 20

 Cost Estimate 2.9 7.5 1.7 9.5 3.5 6 2 5.9 5.8 8.4

     

3 Uncertainty radius 5 40 5 5 5 25 5 20 30 20

 Cost Estimate 3.2 7.5 2 10 3 6 2 5.4 5.8 8.4

     

4 Uncertainty radius 5 40 5 5 5 25 5 5 30 20

 Cost Estimate 3.2 7.5 2 11 3 6 2 5 5.8 8.4

     

5 Uncertainty radius 0 5 5 5 5 25 5 5 30 20

 Cost Estimate 3.2 8.5 2 11 3 6 2 5 5.8 8.4

     
Table 3 – Sample Results 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4-  
Sequence of selection subsets and corresponding costs and values. 
 
Row three in this table shows a change with project 4 leaving the selection subset due to a 
significant increase in costs.  It was replaced by project 2.  No further changes were found in the 
selection sequence.    
 

Run No. Selected Subset Fuzzy Cost Strategic 
Value 

1 {1,3,4,5,7,8} 23.9 78.27 
2 {1,3,4,5,7,8} 23.7 66.503 
3 {1,3,4,5,7,8} 23.7 66.11 
4 {1,2,3,5,7,8}* 22.9 65.35 
5 {1,2,3,5,5,7,8} 23.7 65.74 
6 {1,2,3,5,5,7,8} 23.7 65.76 



 

 

Incorporating Risk 
The initial AHP decision formulation is designed to reflect positive criteria such as strategic 
alignment to the business plan, profitability, corporate citizenship and social responsibility, 
customer satisfaction and the like.   However, it does not yet account for risk.   Like cost, risk can 
be considered as a global resource, to be shared across projects and therefore in limited supply.   It 
is not therefore appropriate to treat risk as merely another criterion in the hierarchy.   
 
One approach [1] is characterised by performing a separate but similar AHP solution process, one 
that focuses purely on negative criteria reflecting identified risk factors directly.  These might 
include occupational health and safety, alienation of share-holders, technical failure, service 
provider dependence and many more.   Care should be taken to insure that risk criteria are not 
simply the inverse of the positive ones already considered.   The problem with this approach is that 
there is no rational way by which the two solutions can be compared.    
 
We can integrate risk considerations into the scheme described above in two ways: 
 
1. Trade risk for cost by identifying the approximate cost of reducing the risk for each project and 
adding this to the project costs Cj above.   Again the process would be driven by successively more 
detailed risk assessments as the likelihood of selection increases.   
 
2. Quantify the aggregate risk (or residual risk if step 1 is taken also) on some common scale for 
each project.  This can be done by a number of means, the simplest perhaps by means of a linear 
function of the quantitative assessments of likelihood and consequences for each risk factor and 
summing these for each project to form the value Rj, j =  1 … N.  We can then compute the risk 
inherent in the selection at any iteration as: 
 
Σ YjRj 
 
If this is done within the process outlined earlier, a map of cost/benefit values vs Risk can be 
produced to aid in the production of the sequence of selection subsets.  This could appear as 
follows. 
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Figure 3 



 

 

 
Here the projects of greatest interest would be those in the lower right hand quadrant, 
corresponding to high selectability and lower risk.   If the analyst determines that any of these risks 
are unacceptably high, the corresponding project can be manually removed from the selection 
subset.   However, it is preferable to allow the optimisation process to make this decision by adjust 
it to accommodate maximum tolerable risk.  This can be achieved by simply adding to our IP 
formulation a constraint of the form 
 
Σ XjRj <= Rmax 
 
where Rmax is the maximum risk deemed acceptable.   
 
The series of selections will each now reflect not only cost/benefit appeal but also the amount of 
risk exposure entailed.  The process continues as before, but now with refinements to both risk and 
cost made to currently selected project and the corresponding narrowing of their uncertainty 
intervals until a stable result is obtained.    
 
The revised process is shown in the diagram in figure 4 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 4 

 

 

 

 

 

Practical Issues  
This process is intrinsically collaborative and distributive, with program managers orchestrating the 
costing effort for individual project initiatives, each operating under the direction of a strategic officer 
who will inform them of refinement and uncertainty requirements.  Responsibilities will mirror the 
hierarchy, with more experienced personnel occupying higher positions, and junior staff obtaining 
valuable experience at the lower echelons of the tree. 

Maximise strategic value 
from top-level AHP 
preference vector subject to 
cost and risk constraint.

Identify candidate projects 
and provide early cost 
estimate with uncertainty 
interval. Calculate AHP

Randomise Costs

Selection 
Stabilised?

No

Yes

Stop

Refine costs  and risks of 
projects in S and reduce 
their uncertainty interval

Identify subset S of 
projects likely to be 

selected

Perform initial risk assessment and 
obtain project risk aggregation scores.  
Cost risk reduction strategies and 
determine residual for each project.

Add risk reduction 
costs to project
costs

Optionally force the 
selection or exclusion 
of projects as needed.

Maximise strategic value 
from top-level AHP 
preference vector subject to 
cost and risk constraint.

Identify candidate projects 
and provide early cost 
estimate with uncertainty 
interval. Calculate AHP

Randomise Costs

Selection 
Stabilised?

No

Yes

Stop

Refine costs  and risks of 
projects in S and reduce 
their uncertainty interval

Identify subset S of 
projects likely to be 

selected

Perform initial risk assessment and 
obtain project risk aggregation scores.  
Cost risk reduction strategies and 
determine residual for each project.

Add risk reduction 
costs to project
costs

Optionally force the 
selection or exclusion 
of projects as needed.



 

 

Although the dynamic nature of this process appears confined to the strategic value optimisation, 
there is no reason that the AHP calculations remain static.  Various AHP criteria and option 
evaluations can be tightened and the iterative process restarted in order to assure a more robust 
analysis. 
 
It is of course of course possible for the process to ignore projects that are ultimately deserving of 
selection.  This could happen under one or more of the following conditions: 
 
 
 

• Poor evaluations were made for those projects within the AHP formulation.  
• Poor cost estimates were made for them 
• Insufficient uncertainty was allowed to cover for the poor estimate. 

 
These should be kept in mind in relation to projects that are persistently ignored by the process. 

 

Conclusions 
The combination of processes for decision-making, project costing, risk quantification and strategic 
value optimisation provide both power and flexibility for the problem of project selection.  Further 
flexibility is made available by the staged approach inherent in the overall process, allowing for 
management intervention in the form of forced selection or exclusion of certain projects for reasons 
that might defy formulation within the model.   
 
Further research here is needed on questions of appropriate risk aggregations, and perhaps a 
refinement on the selection process at each iteration of the procedure. 
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